

Projekt

- Grosse Arealüberbauung im Kanton Zürich
- Mischnutzung
- Insgesamt 7 Gebäude mit einer EBF von ca. 218'000 m²
- Komplexe Gebäudetechnik mit lokalen Lüftungsanlagen und zentralisierter Wärme- und Kälteerzeugung
- Angestrebte Standards: MINERGIE, LEED Platinum

Ziel: Ermittlung des Energiebedarfes für Wärme und Kälte als Entscheidungsgrundlage und Basis zur Dimensionierung der Anlagetechnik und des saisonalen Speichers

Warum Simulation?

- Vorhandene bauliche und natürliche Verschattungen
- Innenhöfe
- Geneigte und runde Fassadenteile
- Glasdächer in den Aussenbereichen

Keine vereinfachte Berücksichtigung möglich für:

- → Solarer Ertrag in die Zonen (Raumklima)
- → Tageslichtnutzung bzw. Regelung des Kunstlichtes

- Unterschiedliche Anforderungen und Profile für die verschiedenen Nutzungen → Optimierung Gleichzeitigkeit:
 - Verwaltung
 - Hotel
 - Konferenzzentrum
 - Schule
 - Spital
 - Theater
 - Ausstellung
 - Verkauf
 - Restaurant

Warum Simulation?

- Komplexe Gebäudetechnik mit:
 - Erdwärmesonden / Grundwasser
 - Rückkühler
 - Wärmepumpen / Kältemaschinen (teilweise gleichzeitig im Betrieb)
 - Fernwärme
 - PV- Anlage

- Bewertung und Dimensionierung für:
 - Saisonale Verlagerung des Erdspeichers
 - Abwärmenutzung
 - Passive Heizung/Kühlung

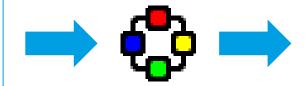
Simulationsstrategie

Gebäudesimulation mit IDA ICE ()

Statische Ermittlung von Prozesskälte und Warmwasserbedarf

Nutzenergie

separate Gebäudetechnikplanung


Endenergie

IDA ICE Gebäudesimulation

Eingabeparameter

- Geometrie in SketchUp
- Thermische Gebäudehülle nach Energienachweis
- Nutzung nach SIA MB 2024
- Klimadaten nach SIA MB 2028
- Verschattungsmodell in SketchUp

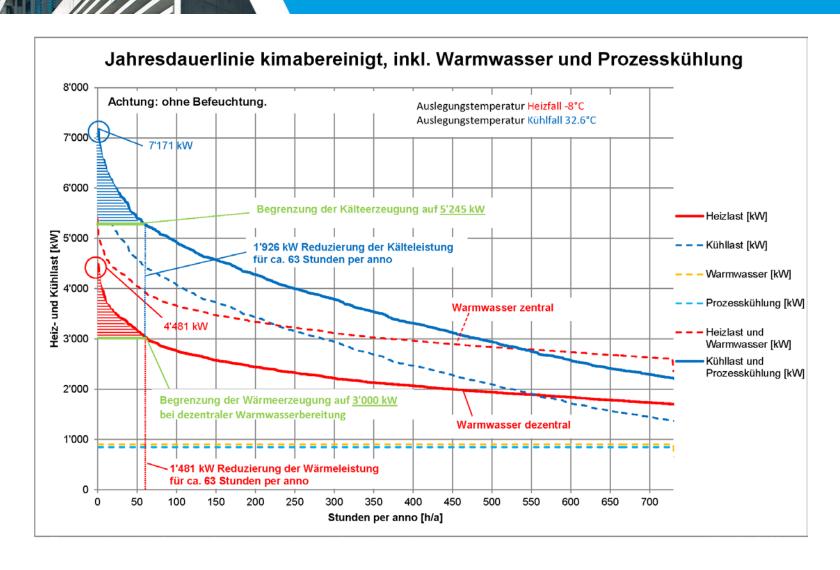
Ausgabeparameter

Nutzenergiebedarf Raumwärme und –kälte, jeweils nach Medium unterschieden (Mediumtemperatur!)

- Lüftungsanlagen
- Lokale Heiz- / Kühlelemente

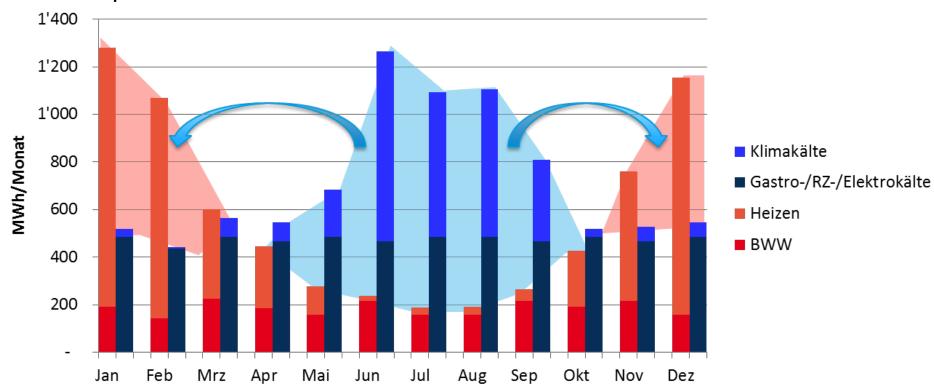
IDA ICE Gebäudemodelle

- Die Bereiche, bei welchen die Planung schon erfolgt war, wurden Raumweise modelliert (z.B. Hotel und Konferenzzentrum)
- Für die Bereichen, bei welchen die Planung noch nicht soweit war oder welche noch zu vermieten waren (z.B. Büro) wurde eine Zonierung vorgenommen:
 - thermisch (z.B. Fassaden-, Eck- und Innenbereiche)
 - nach Nutzung
 - nach Gebäudetechnik (Lüftungsanlage, Typ der lokalen Elemente)


IDA ICE Gebäudemodelle

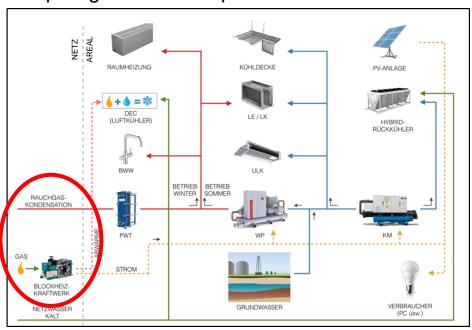
Geb.	Anzahl Nutzungen	Anzahl Zonen	Nettogeschoss- fläche	Anzahl Lüftungsanlage*
1	4 + NN	250	26'460 m ²	7
2	3 + NN	114	16'824 m ²	6
3	5 + NN	213	26'720 m ²	7
4	2 + NN	146	14'074 m ²	6
5	4 + NN	296	40'208 m ²	16
6	4 + NN	277	25'876 m ²	8
7	4 + NN	313	28'203 m ²	17

^{*} teilweise wurden diese für die Simulation nach Nutzung und Regelungsparametern zusammengefasst.

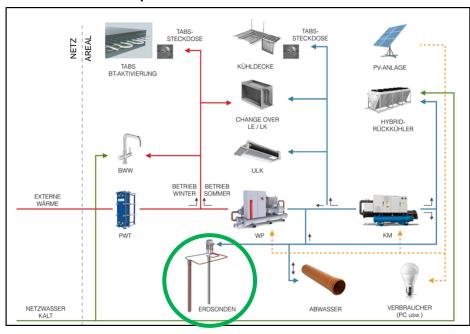

IDA ICE Resultate

Integration der Resultate

Bedarfsprofil:



→ Saisonale Verlagerung mittels Erdspeicher bietet sich an



Integration der Resultate

ursprüngliches Konzept:

neues Konzept:

→ Reduktion von fossilen Energieträgern und die Maximierung von regenerativen Energiequellen

- Optimierung der Erzeugerleistungen für Wärme und Kälte gegenüber traditionelle Betrachtung, unter Berücksichtigung der Abwärmenutzung → «passive» Quellen
 - Prozesskälte im Winter direkt aus WP-Betrieb
 - Free-Cooling durch Erdsonden in Zwischensaison
- Auswirkung:
 - Kälteleistung: 1'500 kW
 - Wärmeleistung: 1'100 kW

